Greetings!

If any of the info on this website was useful for your projects or made your head spin with creative ideas, and you would like to share a token of your appreciation- a donation would be massively appreciated!

Your donation will go to my Robotics Fund, straight towards more sensors, actuators, books, and journeys. It takes a lot to continue building these robots, and I’m really thankful of everyone who helps encourage me along the way.


USD


CAD

“A wise robot once said to me through Serial.println- that robots teach us about ourselves.”

All posts in iPhone

Buddy 4000 + BLE App (work in progress)

We’ve been long awaiting the days when communicating to our robots from an iOS device would involve less jumping through hoops! BLE on the newer iOS devices is pretty sweet.

Here is a video demo of our app interacting with Buddy 4000 using BLE!

We’ve been working on this off and on for a few months. Actually, half of the core functionality was finished a while ago (sending data from the iOS device to the robot). The BLE module we were using wasn’t configured properly to send data from the robot to the iOS device, and we didn’t have a TI CC debugger needed to re-program the BlueGiga chip so yeah… When we heard that @sectorfej had new modules in his InMojo store, we quickly bought one!

Here is the BLE module (wires are 5V, GND, TX, RX):

ble_buddy_wip 004

There’s a great BGLib library for this module that has all sorts of features packed in to it. There wasn’t much documentation about sending data… Here’s how to do it:

  1. ble112.ble_cmd_attributes_write(20, 0, data_len_var, data_var);

The number 20 is the hard part. We couldn’t figure out where to find the info about this number or anything… so we iterated from 0-49 to find it! You might have to do the same for yours as well. Just keep an eye open on Xcode for when data is received on the app side, and then narrow down the numbers until you find the one that works.

We didn’t show this in the video, but we use sending data from the robot to the app for triggering sounds. Specifically owl and fart sounds. (Yes, this might be the most complex fart app to date). It works better with RoboBrrd, as it has sensors that can be used to trigger the sounds.

Anyway, most of the ‘core functionality’ of the app is involved with this (below) and the communication. We can even make it auto connect to a particular device (as you saw in the video), which makes the experience even more seamless.

ble_buddy_wip 003

Here is how auto-connection is done. We save the UUID and name of the device, then check if we see that specific one:

  1. - (void) connectToDefault {
  2.     // ok, let’s try this
  3.    
  4.     if(connected) return; // already connected don’t do anything
  5.    
  6.     NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];
  7.     NSString *givenUUID = [userDefaults objectForKey:defaultDeviceUUIDKey];
  8.     NSString *givenName = [userDefaults objectForKey:defaultDeviceNameKey];
  9.     //CBUUID *zeeUUID = [CBUUID UUIDWithString:givenUUID];
  10.     CFUUIDRef zeeUUID = CFUUIDCreateFromString(kCFAllocatorDefault, (CFStringRef)givenUUID);
  11.    
  12.     int i = 0;
  13.     for(CBPeripheral *periph in allPeripherals) {
  14.        
  15.         if(periph.UUID == zeeUUID) {
  16.             NSLog(@"same UUID");
  17.             if([periph.name isEqualToString:givenName]) {
  18.                 NSLog(@"same name – let’s try to connect");
  19.                 self.peripheral = periph;
  20.                 [bleManager retrievePeripherals:[NSArray arrayWithObject:self.peripheral]];
  21.             }
  22.         }
  23.        
  24.         i++;
  25.     }
  26.    
  27. }

Sometimes specific BLE modules have certain service UUIDs and characteristic UUIDs that you can only send data to. We’ve never experienced a problem with ‘spamming’ everything (yet), but we built in this feature just in case. This is when data is being sent from the app to the robot.

  1. CBUUID *uuidService;
  2.     CBUUID *uuidChar;
  3.    
  4.     int ss = [selectedShield intValue];
  5.    
  6.     switch (ss) {
  7.         case 0: {
  8.             // any
  9.             uuidService = [CBUUID UUIDWithString:roboBrrdServiceUUID];
  10.             uuidChar = [CBUUID UUIDWithString:roboBrrdCharacteristicTXUUID];
  11.         }
  12.             break;
  13.         case 1: {
  14.             // kst
  15.             uuidService = [CBUUID UUIDWithString:kstServiceUUID];
  16.             uuidChar = [CBUUID UUIDWithString:kstCharacteristicTXUUID];
  17.         }
  18.             break;
  19.         case 2: {
  20.             // dr kroll
  21.             uuidService = [CBUUID UUIDWithString:drkrollServiceUUID];
  22.             uuidChar = [CBUUID UUIDWithString:drkrollCharacteristicTXUUID];
  23.         }
  24.             break;
  25.         case 3: {
  26.             // redbear
  27.             uuidService = [CBUUID UUIDWithString:redbearServiceUUID];
  28.             uuidChar = [CBUUID UUIDWithString:redbearCharacteristicTXUUID];
  29.         }
  30.             break;
  31.         default:
  32.             break;
  33.     }
  34.    
  35.    
  36.     for(CBService *aService in self.peripheral.services) {
  37.         if([aService.UUID isEqual:uuidService] || ss == 0) {
  38.             for(CBCharacteristic *aCharacteristic in aService.characteristics) {
  39.                 if([aCharacteristic.UUID isEqual:uuidChar] || ss == 0) {
  40.                     [self.peripheral writeValue:sendData forCharacteristic:aCharacteristic type:CBCharacteristicWriteWithResponse];
  41.                 }
  42.             }
  43.         }
  44.     }

This also allows us to do certain actions for different shields. While going through the example code for the RedBear BLE shield, we noticed it needed a ‘reset’ (or something). We haven’t tested this yet, but hopefully it will make the RedBear one work:

  1. if([selectedShield intValue] == 3) { // redbear shield is weird
  2.        
  3.         CBUUID *uuidService = [CBUUID UUIDWithString:redbearServiceUUID];
  4.         CBUUID *uuidChar = [CBUUID UUIDWithString:redbearResetRXUUID];
  5.         unsigned char bytes[] = {0×01};
  6.         NSData *d = [[NSData alloc] initWithBytes:bytes length:1];
  7.        
  8.         for(CBService *aService in self.peripheral.services) {
  9.             if([aService.UUID isEqual:uuidService]) {
  10.                 for(CBCharacteristic *aCharacteristic in aService.characteristics) {
  11.                     if([aCharacteristic.UUID isEqual:uuidChar]) {
  12.                         [self.peripheral writeValue:d forCharacteristic:aCharacteristic type:CBCharacteristicWriteWithResponse];
  13.                     }
  14.                 }
  15.             }
  16.         }
  17.        
  18.     }

The above is called whenever data is received by the app- eg:

  1. peripheral:didUpdateValueForCharacteristic:error:

When it is all working, it’s really fun to interact with the robot in this way!

ble_buddy_wip 002

There are still some wonky things that happen. For example, if you send too much data- or if you send it at the same time. Sometimes we don’t even know what we did and it will just disconnect (though thanks to our code, it re-connects quickly and without interrupting the user). This happens infrequently, so it might be odd cases.

Special thanks to @macisv, who at SecondConf last year taught me lots about BLE and let me experiment with it! And of course @sectorfej for making this great module that we used :)

Now for the hard part: completing and releasing it. It’s kind of weird, even though we are using this quite often… we have kind of come to dislike this interaction (of pressing and holding buttons) because it’s quite boring. So we’re not sure yet if this one will be finished, or if we’ll be trying something else, perhaps with more gestures and such.

ble_buddy_wip 001

More fun coding ahead! :D

RoboBrrd & Apps for Arduino at SecondConf!

SecondConf Splash

We’re going to SecondConf! SecondConf is a developers conference for iOS and Mac. It’s sort of like WWDC, but there will be less people there, more discussions, and lots of learning of course!

We were invited to give a talk last year, but thanks to a cold on the end of Maker Faire we had to post-pone it to this year. And we were actually invited back this year to give a talk! Sweet!

If you’re going to SecondConf, our talk is Sunday at 11:00AM!

You will not want to miss it, because it will be about robots and electronics and how to create a blended reality by combining it with software!

The talk is about 40 minutes long. During the talk we will discuss:

Apps for Arduino
- “If hardware is the heart of a project, then software is its soul”
- Matatino and Wijourno frameworks
- Why lack of feature creep is its best feature
- Community, open source
- And more!

RoboBrrd
- “Do-it-yourself educational robotic pet”
- Educational aspects
- Fun hardware
- And more!

The talk will also include some demos of how everything works and such!

From what I’ve heard, the talks will be recorded and archived, so it will be online in the future.

secondconf-robotgrrl-speakers

Check it out! Dr. Wave is also going to be there! Remember when RoboBrrd visited Pixar while we were at Evil Mad Science? It’s always really interesting to learn more about Pixar, movies, software, and just so many things.

Bob Kressin, who is the presenter right after me then lunch, is also doing a presentation on Bluetooth Low Energy. This will also be really cool, since we are going to work together to get RoboBrrd working with BLE on Friday! I’m totally psyched for this!

Mega thank you for SecondConf for the opportunity and accommodations! It’s going to be great. Looking forward to meeting everyone!

RoboBrrd Food – Using the Redpark Serial Cable

Remember a while ago, when I was able to send data through the MFi SkyWire cable? It turns out, now there is a cable designed for hobbyists, with an SDK, by Redpark! They were very kind enough to send me a cable, so I figured that the first thing to try would be to feed RoboBrrd!

Here is a video where I explain everything in detail!

View video on YouTube

Here is a link to the code on Github!

What is next? For WWDC 2011 legacy sake, I will probably try to drive DOGCOW robot with the iPhone’s accelerometer. This time though, the cable would be attached to an XBee so that it will be wireless. :D